Q.P. Code: 18CE0154

R18

Reg	. N		
	S	IDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR	
		(AUTONOMOUS)	
		B.Tech III Year I Semester Regular Examinations Feb-2021	
	SOIL MECHANICS		
— •	a 1	(Agricultural Engineering)	
Time	3 h	nours Max. Marks: 60	
		PART-A	
		(Answer all the Questions $5 \ge 2 = 10$ Marks)	
1	a	Define Toughness index. 2M	
	D	What is meant by effective stress and write expression? 2M	
	с d	Coefficient of volume changes	
	u A	Write the formula for major and minor principle strong	
	C	PADT D	
		(Answer all Five Units 5 x $10 = 50$ Marks)	
2	я	Using three phase diagrams of soil derive an expression for water content in terms 6M	
-		of Void ratio. Specific gravity and degree of saturation	
	b	A saturated soil sample has a water content of 25% and unit weight of 20 kN/m^3 4M	
		Determine the Specific gravity of the solid particles, dry unit weight and void ratio	
		OR	
3	Us	sing three phase diagrams of soil, derive an expression for saturated unit weight of soil 10M	
	in	terms of void ratio, unit weight of water, specific gravity and degree of saturation.	
		UNIT-II	
4	W	hat are the different methods for determination of coefficient of permeability in a 10M	
	lat	boratory? Explain any one method.	
-	T	OR	
5	Ex	cplain the constant head permeability test with the help of neat sketch. 10M	
	_	UNIT-III	
6	Ex	cplain Westergaard's theory for the determination of the vertical stress at a point. 10M	
		OR	
7	A	rectangular foundation 4m by 5m carries a u.d.l of 200kN/m ² . Determine the vertical 10M	
	str	tess at a point p located and at a depth of 2.5m	
0	D		
8	De	escribe the consolidometer test. Show how the results of this test are used to predict 10M	
	ine	e rate of settlement and the magnitude of settlement.	
9	Ca	OK alculate the final settlement of the clay layer with an increase of pressure of $30kM/m^2 = 10M$	
	at	mid height of laver take $y = 10 \text{kN/m}^3$	
	ui.		
10	W/	(hat is unconfined compression text? Skotch the apparetus used what are its advantages 10M	
10	OV.	reaction incomment compression rest: Sketch the apparatus used what are its advantages 10101	
	UV	OR	
11	Th	the stresses at failure on the failure plane in a cohesion less soil mass was Shear stress 10M	
	=	5 kN/m^2 : Normal stress = 18 kN/m ² . Determine the resultant stress on the failure	
	pla	ane, the angle of internal friction of the soil and the angle of inclination of the failure	
	pla	ane to the major principal plane.	

END

Page 1 of 1